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The Dirichlet problem for the biharmonic equation is solved using the thirteen-point 
formula. The prescribed normal derivative on the boundary is replaced by two classes of 
boundary approximations in order to define the solution at certain fictitious node points. 
A direct method is used to solve the resulting system of algebraic equations. It is found 
that the accuracy of the numerical solution strongly depends upon the boundary approxi- 
mation used, as in the coupled-equation approach. However, the cost of obtaining the 
solution is almost independent of the boundary approximation, unlike the coupled-equation 
approach. 

1. INTR~DuOTI~N 

Consider the Dirichlet problem for the biharmonic equation 

ddu(P) = F(P) PED (l-1) 

w> = f(P), g m = g(P), PEB, (1 .a 

where D is a closed convex domain in two dimensions and D is its boundary; au/an 
represents the outward normal on a. 

The biharmonic equation (1.1) is frequently split into two Poisson equations 

h(P) = u(P), Au(P) = F(P), PED. (1.3) 

The boundary values for u and v may be written as follows: 

W) = f(P), PED (1.4a) 

f4P) = 4P) - 44m - g(P>), PEB. (1.4b) 
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The coupled boundary-value problems (1.3H1.4) are equivalent to the problem 
(1.1)-(1.2) and have a unique solution for any nonzero value of c [lo, 141. 

In order to solve the biharmonic equation numerically, we introduce a uniform 
mesh of width h. Let Dh be the set of all mesh points inside D, D, be the set of bound- 
ary mesh points, and Dh = Dh v L$, . Let uh , vh represent the finite-difference appro- 
ximations of u, v, respectively. The Poisson equations in (1.3) are discretized using 
the five-point formula: 

&Uh = h-2[Uh(X - h, y) + Uh(X + h, Y) + %(X9 Y - 4 

+ Uh(X, Y + h) - 4Uh(& Y)l 

at each mesh point P in Dh . The boundary values of v are defined in terms of du 
which is undefined on D. However, these values can be approximated using boundary 
approximations a,u, defined in [5, lo]: 

Letr,i;,rEDhsuchthat~=~=~ >O.Letr,,r,EDI,suchthatr,r,,r,lieona 
straight line perpendicular to the boundary D at r and G, = ph, 7;i;, = @. 

A boundary approximation of order h is given by 

vh(r) = ifhuh = h-2[2p-2U,(r,) + 2p-%u,(r) + f(F) 

+ f(r) - W + P-“lf@>l, P 2 1. (1.5) 

This approximation with p = 1 corresponds to the conventional method of boundary 
approximation [4, 8, 14-181. This approximation with p = 2 has also been used for 
computations of viscous flow problems [7, 111. 

A boundary approximation of order h2 is given by 

vh(r) = i&u&-) = h-2 [2&w&J - W+w,(r,) +f(F) 

h,(r) - 20 + ap3 - w3f(r)], (1.6) 

where 

01 = p-2q-y p - 4)-l, P z 4; P,4 b 1. 

This approximation with p = 2, q = 1 has been briefly studied by Ehrlich [4]. Some 
other authors have commented on the suitability of this type of formulas [15, 181. 

When a, is defined by the first-order boundary approximation (1.5), the discretiza- 
tion error (eh = u - UJ in /,-norm is given by [lo] 

II e II: < C [q M: + h4 ( pz(p;sf I) M&f4 + f MB”) + o(h5)], (1.7) 



238 GUF’TA AND MANOHAR 

where A4, is the maximum value of the j-th derivatives of u on the domain D. If h is 
sufficiently small and Mi are reasonably bounded, then 

i$x 1 e,(P)1 < O(/Z~/~), h -+ 0. 
h 

(1.8) 

When & is defined by the second-order approximation (1.6), the discretization error 
is given by 

(1.9) 

and 

xn;x 1 eh j < O(P), h + 0. (1.10) 
1 

It is clear from the above estimates that the error bounds generally increase when 
larger values of p and q are chosen to define the boundary values of vh . However, 
when the derivatives M, are very large and the mesh size h not too small, this trend 
may not hold. We illustrate this point in Section 3. 

It has been shown [5] that the rate of convergence of the iterative procedure to solve 
the discrete form of the coupled equations (1.3)-(1.4) increases when boundary 
approximations with larger p and q are used. There is a tradeoff between the speed of 
convergence and accuracy and suitable values of p and q exist for which the conver- 
gence is faster than the conventional method (approximation (1.5) with p = 1) as 
well as the accuracy being improved. In fact, it has been recommended to choosep, q 
as large as desired such that pq = O(F) in order to improve accuracy as well as the 
rate of convergence [S]. 

In the present paper we examine the numerical procedures for solving the bi- 
harmonic equation (1.1) without splitting it into two Poisson equations. This proce- 
dure avoids the need to define v (= Au) on the boundaries as well as the use of 
iterative procedure to solve the coupled Poisson equations (1.3Hl.4). We discretize 
the equation (1.1) using the thirteen-point formula with truncation error of order h2. 
This formula requires the values of uh at certain fictitious node points outside i& . 
We propose boundary approximations similar to (1.5), (1.6) to define these unknown 
uh values. We use a direct method to solve the resulting system of algebraic equations. 
The computational effort does not depend as strongly on the boundary approxima- 
tion used as in the case of the coupled-equation approach [5]. However, the accuracy 
of the approximate solution strongly depends upon the choice of the boundary 
approximation. Based on the theoretical and numerical evidence, we conclude 
that the boundary approximations of second order with moderate values of p and q 
indeed provide a most accurate solution in the class of O(F) schemes. 

The thirteen-point formula has previously been studied by various authors [3, 6, 121 
who devised iterative procedures to solve the discrete equations. Due to the ill- 
conditioned nature of the coefficient matrix, these attempts were not very successful, 
Some direct methods have also been proposed to solve this discrete system [ 1,2,4, 13, 
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161. All of these studies utilize the reflection principle to defme the unknown values of 
uh outside & . When any of the other boundary approximations are used, the coeffi- 
cient matrices lose their regular structure and the above direct methods are not 
applicable. We use the boundary approximations from both classes of formulas and 
study their effect on the overall accuracy. In the last sections we consider possible 
improvements as well as the limitations of our method. 

2. THE NONCOUPLED APPROACH 

The thirteen-point approximation-of the biharmonic equation (1.1) is given by 

J%Ui5 = hm4[Ui5-2 + Uij+2 + 4-2.5 + Ui+2.5 - 8(uij-l + Uij+l 

+ Ui-1.I + Ui+l,i) + XUi-l.i-1 + ui-l.i+l + ui+l,j-l 
+ ui+l.j+l) + 2ouijl* (2.1) 

At each mesh point (xi , u5) of D,, , we write the finite-difference approximation of the 
biharmonic equation (1.1) as follows: 

Lhuh(xi Y yj) = F(xi 9 y5)* (2.2) 

When the mesh point (Xi , r,) is adjacent to the boundary ah , then Eq. (2.2) involves 
at least one ValUe of uh which lies outside & (for example, if (xi , yj) E Dh and 
(xi-1 , ~5) E ah , then ui-2.5 is undefined because (Xi-2,vi) $ a,). Such undefined 
values of ah are conventionally calculated by the following reflection formula [l-4, 6, 
12, 13, 161: 

au t-1 ax i-1.j = 
ui.5 - %-2.5 + O(h2), 

2h 

and the unknown value of ui-2.3 is obtained from 

Uf-2.j M ui.j 
- 2h G3,-,., - 

(2.3) 

In this paper, we consider approximations for &@n that involve values of un far 
inside the region Dh . The first-order boundary approximation is given by 

2 (r) = 2 [2~-~u(r,) - u(rl) - u(r-1) + (2 - 2~-~) u(r)] + O(h2), P 3 1, (2.5) 

where I o & ; rl , rs E Dh and r-, $ & such that F, =ph, ‘r, = FF-, = h and 
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r, r-l , rl , rz, all lie on the normal at r. Using (2.5) we can define the value of uh(rel) 
which is substituted into the left-hand side of (2.2). For example, 

l&-2 j w 2p-2z.l. z+e-1.3 - uij + (2 - 2p-2) ui-1.5 - 2hp-l ($)i-l i * (2.6) 

The second-order boundary approximation of au/an is defined by 

g(r) = 2(p-~q)h [--2q34r,) + 2p34rQ) - u(h) - u(r-d 

+ (2 + 2q3a - 2~~4 u(r)1 + W3); P, 4 3 1, P f 4 (2.7) 

where c1 = p-2q-2( p - q)-l and Z, = qh. As in the previous case, the value of 
uh(rJ can be defined from (2.7). For example 

Uid2,j = - 2q3ffUf+p-l.j + 2pSCUi+a-1,j - Uij + (2 + 2q3a - 2P301) k1.i 

- 2 y h (g,i_l,j - (2.8) 

We denote the first-order boundary approximation (2.5) as the (p, 0) formula or the 
one-point formula. The second-order boundary approximation (2.7) is called the 
(p, q) formula or the two-point formula. 

In particular, the (1, 0) formula (Eq. (2.6) with p = 1) is the conventional reflection 
formula (2.4). The (2, 0) formula is 

%-2.5 = hi+l,j - Uij + Qui-I,* - h(%)i-l,j * (2.9) 

The higher-order (2, 1) formula (Eq. (2.8) with p = 2, q = 1) is given by 

ui-Z,i = +fUi+l,j + 3U<,j - %Ui-l,j - 3h(U,)i-,,j . (2.10) 

The (3, 2) formula is given by 

Ui-2,j = - +lifB.$ + &+1,j - U&j + gui-1.1 - g&Ji-1.j . 

The (3, 1) formula is given by 

(2.11) 

Ui-2.j = - $4+2,i + 2Uii - QU&,,j - ~h(ffQ!)~-~,~ a (2.12) 

The first author has shown [lo] the equivalence of (2.1), (2.5) and (2.1), (2.7) to the 
corresponding approximations of the coupled Poisson equations (1.3) with (1.5) and 
(1.6), respectively. Consequently, the error bounds (1.7) and (1.9) hold for the direct 
discretization of the biharmonic equation with boundary approximations (2.5) and 
(2.7), respectively. 
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3. NUMERICAL EXAMPLES 

We considered several examples to study the performance of the one-point and 
two-point formulas for various values of p and q. Some of the examples have been 
studied by other authors and provide a useful basis for comparison. In each case we 
took the unit square 0 < x, y < 1 as the region of integration and covered it by a 
mesh of uniform width h: {xi = ih, yj =jh, 1 < i, j < n; (n + 1)h = l}. 

The thirteen-point formula (2.1) was written at each mesh point (ih, j/r). When this 
formula needed a value of uh on L& , the given data was substituted and the corre- 
sponding term removed to the right-hand side. When the formula needed a value of 
uh outside Dh , this value was defined using (2.5) or (2.7). This resulted in the modifica- 
tion of some of the elements of the coefficients matrix A of the system: 

Au = b. (3.1) 

The matrix A is of order n2 and has at most 13 nonzero elements in each row. The 
coefficient matrix varies with the boundary approximation. If 1 <p, q < 3, then A 
has 13 nonzero diagonals in a band form with total bandwidth (4n + 1). When p or q 
are taken to be larger than 3, then the total bandwidth increases to 2(y - 1) n + 1, 
where y = max(p, q). This increase in bandwidth in turn affects the core requirements 
as well as computing times. Since the accuracy generally deteriorates with larger 
values of p and q [5, lo], there is nothing to be gained by taking p, q > 3. 

We used certain direct solvers (viz., LEQTlB, LEQTZB of IMSL and GELB of 
SSP) to solve the system of linear equations (3.1). These band solvers require the 
storage of the full band (i.e., n2 x (4n + 1) elements). As an example, with mesh 
size h = 0.05, the matrix A is of order 361 x 361 and the band solver requires the 
storage of 361 x 77 (= 27797) elements. Unfortunately, we have been unable to 
obtain a sparse matrix solver which may cut down the storage requirement to n2 x 13 
elements (for h = 0.05, 4693 elements). 

Since the matrix A varies with the boundary approximations, it is not possible to 

TABLE I 

Storage requirements and execution times (IBM370/158). 

Mesh 
size 

Number of 
unknowns 

Total core requirements Execution 
Band width using LEQT2B times (set) 

115 16 17 48K 0.06 

l/10 81 37 76K 1.25 

l/16 225 61 188K 7.9 

l/20 361 77 328K 20.2 
l/25 576 97 612K - 

l/50 2401 197 4808K - 
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preprocess the matrix decomposition for all problems. However, A has a regular band 
structure and it would be advantageous to develop a direct solver which will take 
into account this structure of the matrix. 

We were able to obtain fairly accurate solutions of the matrix equation (3.1) using 
the band solvers LEQTlB and LEQT2B of the IMSL. We were unable to use finer 
mesh sizes because the storage requirements for the whole band became enormous. 
Typical storage requirements and execution times are given in Table I. 

We now give detailed results for a selection of examples. 

EXAMPLE 1. 

Ah = 0. 

TABLE II 

(3.2) 

Maximum Error, I( - uI, 

Boundary Approx. Direct method Iterative method No. of iterations 
h (P, 4) non-coupled equation coupled approach coupled approach 

l/10 

l/5 I,0 0.5123 (-2) 
230 0.1451 (-1) 
390 0.2360 (-1) 
291 0.6990 (-3) 
331 0.1012 (-2) 
3,2 0.2601 (-2) 

190 0.1481 (-2) 
290 0.5218 (-2) 
330 0.1006 (-1) 
2, 1 0.8774 (-4) 
3, 1 0.1373 (-3) 
332 0.4015 f -3) 

190 0.5856 (-3) 0.59 (-3) 32 
290 0.2238 (-2) 0.23 (-2) 22 
390 0.4695 (-2) 0.47 (-2) 17 
291 0.1240 (-4) 0.23 (-4) 42 
3,l 0.2670 (-4) - - 

392 0.9441 (-4) 0.10 (-3) 30 

120 0.3710 (-3) 0.3922 (-3) 31 
2, 0 0.1454 (-2) 0.1481 (-2) 29 
330 0.3135 (-2) 0.3159 (-2) 17 
2, 1 0.4768 (-5) 0.2909 (-4) 48 
3, 1 0.9538 (-5) 0.3225 (-4) 36 
332 0.4387 (-4) 0.6157 (-4) 27 

l/16 

l/20 

“0.5123 (-2) = 0.5123 x 10-a. 
Note: Data for h = l/16 (coupled approach) is taken from [5]. 
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The exact solution is u = x2 + y2 - xez cos y. This example has been considered 
by Ehrlich and Gupta [5] through the coupled-equation approach. The maximum 
difference between the approximate and exact solutions are given in Table II. 

In Table II we also give some of the results from the coupled-equation approach 
and corresponding number of iterations required to achieve convergence. It is noted 
that, for example, for h = l/20 the iterative procedure for the coupled equation 
approach takes approximately 1.5 set per iteration (using our package [19] on IBM 
370/158) which addes up to 72 set for the boundary approximation (2, 1). As a 
comparison, the direct method for the noncoupled approach takes 20.2 set for 
solving the same problem (see Table I). The direct method yields a slightly more 
accurate solution because the iterative method depends upon the stopping criteria, 
whereas the direct method does not. 

EXAMPLE 2. 

LlLlu = 0. (3.3) 

The exact solution is u = Y? - 3y2 + 2xy. This example was considered by Greenspan 
and Schultz [S] who used the coupled-equation approach with the (1, 0) boundary 
approximation and h = 0.05. Their numerical solution agreed with the exact solution 
to three decimal places. Convergence was achieved after 93 iterations in 6 min of 
computer time on UNIVAC 1108. On our computer (IBM 370/158), 93 iterations 
would take approximately 140 set of execution time compared to 20.2 set for the 
direct approach. The maximum errors with various boundary approximations are 
given in Table III. 

TABLE III 

Example 2 

h P, 4 Maximum error Error in 181 

l/20 190 0.2168 (-3) 4.001 

290 0.8495 (-3) 

330 0.1836 (-2) 

2, 1 0.2861 (-5) 

391 0.2861 (-5) 

392 0.2861 (-5) 

. 
It is noted that all two-point boundary approximations in Table III yield the same 

error 2.861 x 10-6. This is expected as the two-point formulas are of order ha and the 
difference equations are exactly satisfied by the exact solution (3.3). Theoretically, the 
discretization error is zero in this case. 
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EXAMPLE 3. 

Ah = 8[3~+(1 - y)” + 3x71 - x)” + (6x2 - 6x + 1)(6y2 - 6~ + l)] (3.4) 

with the exact solution u = x2(1 - x)” y2(1 - v)“. This example was considered by 
Bauer and Reiss [l] who defined a fast direct solver for the thirteen-point difference 
approximation (2.1) of the biharmonic equation. Batter and Reiss used the (1, 0) 
boundary approximation which provides a block symmetric coefficient matrix 
[A,, Bi , Cd, Dg , Ei] with Ai = Ei = I, 

Bi = Di = [0, 2, -8, 2, 01, c< = [I, -8, Cl,) -8, 11. 

The block structure is not so regular when any other of the (p, o) or the ( p, q) 
formulas are used. Hence, the block elimination procedure of [l] is not applicable in 
general case. 

Bauer and Reiss solved Example 3 with mesh width h = l/26 and the maximum 
relative error was 1.13 ‘A (max. error = 0.00004414) at x = y = 0.5. Our results 
with coarser mesh (h = l/20) are summarized in Table IV. The two-point formuls 
clearly yield better results for the same cost. 

In all of the above examples, we note that the two-point formulas yield a more 
accurate solution than the one-point formulas. Moreover, the errors become worse 

TABLE IV 

Example 3 

h P7 9 Max. error Max. relative error 

1120 I,0 0.7463 (-4) 1.91 % 

2,o 0.2377 (-3) 6.09 % 

390 0.4856 (-3) 12.43 % 

2, 1 0.1846 (-4) 0.47 % 

391 0.1994 (-4) 0.51% 

332 0.2791 (-4) 0.71 % 

when p, q increase. In each of the above cases, the maximum values M$ of the jth 
derivatives are reasonably bounded. We now consider an example where Mj are very 
large and the pattern noted above does not hold. 

EXAMPLE 4. 

.ddu = (2~)~[4 cos(27rx) cos(27ry) - cos(27rx) - cos(27r~)] (3.5) 

with the exact solution u = (1 - cos 27rx)(l - cos 2~~7). 
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This example was considered by Bauer and Reiss [I] who used their direct solver 
with the (1, 0) boundary approximation and h = l/26. The maximum relative error 
was found to be 0.98 % at x = y = 0.5 (maximum absolute error = 0.03920). The 
results of our calculations with h = l/20 are summarized in Table V. 

TABLE V 

Example 4 

h 

l/20 

P. 9 Max. error 

l,O 0.066639 
290 0.083653 

330 0.132081 

2, 1 0.060430 

3, 1 0.057601 

322 0.042403 

4-1 0.054934 

432 0.033173 

423 0.019814 

Max. relative error 

1.66% 

2.09 % 

3.30 % 

1.51 % 

1.44% 

1.06% 

1.37% 

0.83 % 

0.49 % 

In this example, we note that the second-order formulas are indeed more accurate 
than the first-order formulas. However, the errors tend to decrease asp, q are increased! 
This is an unexpected trend because the (2, 1) formula is expected to be the most 
accurate formula in the class of second-order boundary approximations. 

The discrepancy is explained by the fact that the derivatives of the exact solution u 
have large values and the term involving p, q in the estimate (1.9) has a negligible 
effect on the overall error. 

In fact, in this example, Mj = 2(27r)j and M3 = 496.10, M4 = 3117.09 and 
M, = 123057.82. The error estimates (1.7) and (1.9) may be rewritten, respectively, as 

11 e, 11,” < 4(2+ h3C[+p2 + h{+p2(p2 + 1)~ + 9(2~)‘)s>l + W5) (3.6) 

and 

II eh 11: B 4(2~)* h4C[+(2n)4 + &(I + pq)2 h] + O(h’). (3.7) 

In the case of the (p, o) formula, each term of the error estimate (3.6) involves p, 
so we expect the errors to increase when p is increased. This is true as seen in Table V. 
In the case of the ( p, q) formula, the values of p and q do not appear in each term of 
the error estimate (3.7). In fact, the first term inside the brackets on the right-hand 
side of (3.7) has value 692.69 which is considerably large compared to the second term, 
unless p, q are very large. Thus, for reasonable values of p, q we expect the discretiza- 
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tion error to be of the same order. The fact that the errors actually decrease with 
large p, q (two-point formulas) may be attributed to the effect of rounding errors. 

Even though the (2, 1) formula is not the most accurate formula in this example, it is 
still more accurate than all of the one-point formulas. We also note that several of 
our two-point formulas (viz., (4.2) and (4, 3) formulas) give a more accurate solution 
with a cruder mesh (h = l/20) than that obtained by Bauer and Reiss [I] with h = l/26. 

4. POSSIBLE IMPROVEMENTS 

We now consider two possible methods of improving accuracy: 

4.1. Richardson Extrapolation 

Richardson extrapolation to the limit may be used to improve accuracy. The one- 
point formulas have discretization errors of order hs12, whereas the two-point formulas 
have errors of order h2. We used the Richardson extrapolation with h = l/10 and 
h = l/20 and the results for Example 4 are summarized in Table VI. 

TABLE VI 

Richardson extrapolation on Example 4. 

P, 4 Max. error Max. relative error 

190 0.046568 1.16% 
2, 1 0.005527 0.14% 
3, 1 0.008060 0.20 % 
3,2 0.021153 0.53 % 

We note from Table VI that the (2, 1) boundary approximation again is the most 
accurate formula. The effects of rounding errors seem to have been smoothed out 
by the extrapolation procedure. 

4.2. p-Extrapolation 

The discretization error for the one point formula has the form 

ma”,” 1 eh I = O(h3j2) 

= QCpM&3/2 + O(h2), h + 0. (4.1) 

Since p appears explicitly in the leading term, an extrapolation on p can be carried 
out in order to improve accuracy. We assume that for a fixed mesh width h and two 
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different boundary approximations ( p1 , 0) and (pZ , 0), the solutions obtained are 
z+,l(x, y) and uAa(x, y), respectively. Then, 

uhl(x, y) = 4x, Y) + KhMW2 + WY, 

uh2(x, y) = u(x, y) + )CpzM&3’2 + Wh3. 

(4.2) 

(4.3) 

Multiplying Eqs. (5.2) and (5.3) by p&p2 - pl) and pJ(p, - pl), respectively, and 
subtracting, we get 

uh(x, y) = P2Uh.l - P1Uh2 
Pa - PI 

= u(x, y) + O(he). 

Thus the extrapolated solution un(x, y) is of second order. The results of the above 
p-extrapolation on Example 4 are presented in Table VII. 

TABLE VII 

p-extrapolation on Example 4. 

h PI PZ Max. error Max. relative error 

l/20 1 2 0.049142 1.23 % 

1 3 0.033558 0.84 % 
2 3 0.031312 0.78 % 

1 5 0.02678 0.70 % 

2 4 0.060642 1.52% 
3 6 0.273168 6.83 % 

From Table VII it may be noted that p-extrapolation is successful only for small 
values of p1 and pa . 

Similar extrapolation for the two-point formulas does not seem feasible as the 
error estimate (1.9) does not contain p, q explicitly in the principal error term. 

5. LIMITATIONS OF THE DIRECT METHOD 

The major handicap in the use of direct methods for the uncoupled biharmonic 
equation is in the storage requirements of the coefficient matrix. At this moment we 
are’ unable to use finer mesh sizes and many boundary approximations because the 
available band solver routines require the storage of all the zeros within the band. 
When good sparse matrix packages become available and standardized, hopefully 

581/3312-7 
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the direct methods would be applicable to a large variety of problems. We did attempt 
to use a recently published sparse matrix package [9] but were not successful in 
obtaining solutions beyond h = l/25 because of the storage requirements of this solver. 

6. CONCLUSIONS 

We have shown how direct solvers can be used to obtain the solutions of the 
biharmonic equation in the noncoupled form. When a direct solver is applicable, 
it is much more efficient than the large variety of iterative methods available in the 
literature. The direct method is also more efficient than the coupled-equation 
approach because one need not search for the optimum parameters. 

The cost of solving the discrete biharmonic equation using a direct solver is almost 
independent of the boundary approximation used. In such a situation, the two-point 
formulas are much more accurate than the one-point formulas. In particular, the 
(2, 1) formula is recommended as the optimum formula in order to obtain an error of 
order h2. 
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